Sequence of Dualizations of Topological Spaces Is Finite

نویسندگان

  • MARTIN MARIA KOVÁR
  • Martin Maria Kovár
چکیده

Problem 540 of J. D. Lawson and M. Mislove in Open Problems in Topology asks whether the process of taking duals terminate after finitely many steps with topologies that are duals of each other. The problem for T1 spaces was already solved by G. E. Strecker in 1966. For certain topologies on hyperspaces (which are not necessarily T1), the main question was in the positive answered by Bruce S. Burdick and his solution was presented on The First Turkish International Conference on Topology in Istanbul in 2000. In this paper we bring a complete and positive solution of the problem for all topological spaces. We show that for any topological space (X, τ) it follows τ = τ. Further, we classify topological spaces with respect to the number of generated topologies by the process of taking duals. 0. Definitions and Notation Through the paper we mostly use the standard topological notions. The main source of definitions of some newer concepts is the paper [5] or the book [6] in which the reader can find many interesting connections to modern, computer science oriented topology. In this paper, all topological spaces are assumed without any separation axiom in general. Let (X, τ) be a topological space. Recall that the preorder of specialization is a reflexive and transitive binary relation on X defined by x 6 y if and only if x ∈ cl {y}. This relation is antisymmetric and hence a partial ordering if and only if X is a T0 space. For any set A ⊆ X we denote ↑ A = {x : x > y for some y ∈ A} and ↓ A = {x : x 6 y for some y ∈ A} . 2000 Mathematics Subject Classification. 54B99, 54D30, 54E55.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

METACOMPACTNESS IN L-TOPOLOGICAL SPACES

In this paper the concept of metacompactness in L-topologicalspaces is introduced by means of point finite families of L-fuzzy sets. Thisfuzzy metacompactness is a natural generalization of Lowen fuzzy compactness.Further a characterization of fuzzy metacompactness in the weakly inducedL-topological spaces is also obtained.

متن کامل

On exponentiable soft topological spaces

An object $X$ of a category $mathbf{C}$ with finite limits is called exponentiable if the functor $-times X:mathbf{C}rightarrow mathbf{C}$ has a right adjoint. There are many characterizations of the exponentiable  spaces in the category $mathbf{Top}$ of topological spaces. Here, we study the exponentiable objects in the category $mathbf{STop}$ of soft topological spaces which is a generalizati...

متن کامل

Vector Valued multiple of $chi^{2}$ over $p$-metric sequence spaces defined by Musielak

In this article, we define the vector valued multiple of $chi^{2}$ over $p$-metric sequence spaces defined by Musielak and study some of their topological properties and some inclusion results.

متن کامل

New characterizations of fusion bases and Riesz fusion bases in Hilbert spaces

In this paper we investigate a new notion of bases in Hilbert spaces and similar to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce a new denition of fusion dual sequence associated with a fusion basis and show that the operators of a fusion dual sequence are continuous projections. Next we dene the fusion biorthogonal sequence, Bessel fusion basis, Hil...

متن کامل

s-Topological vector spaces

In this paper, we have dened and studied a generalized form of topological vector spaces called s-topological vector spaces. s-topological vector spaces are dened by using semi-open sets and semi-continuity in the sense of Levine. Along with other results, it is proved that every s-topological vector space is generalized homogeneous space. Every open subspace of an s-topological vector space is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002